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ABSTRACT

Acoustic scene classification is paramount for enhancing
human-machine interaction, enabling devices to understand
and respond to their acoustic surroundings. The reliance
of acoustic scene classification on fully supervised learning
faces challenges due to the scarcity and imbalance of la-
beled data, which limits the model’s generalization capabil-
ities. Semi-supervised learning emerges as an effective solu-
tion, leveraging unlabeled data to overcome these limitations
and enhance model robustness. To exploit these advantages,
we have developed a semi-supervised framework for acoustic
scene classification that integrates pseudo-label and consis-
tency regularization strategies to harness the complementary
strengths of labeled and unlabeled data. Within this frame-
work, the Hidden unit BERT (HuBERT) model is utilized to
learn the feature distribution within the inherently complex
mixture environments of the ICME dataset. The offline clus-
tering step of HuBERT aids in generating aligned target la-
bels, thereby enriching the prediction loss with nuanced real-
world speech features. Through extensive experimentation,
we meticulously explored and established the optimal syner-
gistic interaction between HuBERT and our semi-supervised
framework, achieving significant advancements in acoustic
scene classification accuracy and model adaptability.

Index Terms— Acoustic scene classification, semi- su-
pervised learning, domain shift, Consistency regularization,
Pseudo-label

1. INTRODUCTION

With the development of artificial intelligence, the deep-
learning based methods achieve promising performance on
many tasks about acoustics, facilitating the analysis of audio
signals. Acoustic scene classification (ASC) [1], a crucial re-
search issue in computational auditory scene analysis, aims
to recognize the unique acoustic characteristics of an envi-
ronment and identify the scene to which an audio belongs.

Recent methodologies [2, 3, 4] for acoustic scene classi-
fication via deep learning exhibit a significant dependency on
training dataset. This reliance often results in low generaliza-
tion as the existence of data bias in training data, which in turn
diminish the adaptability of classification algorithms. Conse-
quently, these algorithms trained on insufficient data demon-

strate reduced efficacy in predicting acoustic scene categories
under real-world scenarios, highlighting a critical challenge
in the application of audio analysis methods.

To mitigate the insufficiency and bias of data, more train-
ing data are necessary to enhance the generalization ability of
classification model. However, the manual annotation of huge
training data incurs significant costs. To address this chal-
lenge, we introduce a semi-supervised learning (SSL) frame-
work into acoustic scene classification, leveraging some la-
beled data and large unlabeled data to improve the perfor-
mance without extra manual labeling.

In this paper, we introduce a semi-supervised training
strategy into acoustic scene classification task. And a power-
ful pre-trained model is introduced into the semi-supervised
training strategy as backbone. First, the labeled audio sig-
nals are used to endow the model with acoustic classifica-
tion ability. And then, we design a contrastive strategy to as-
sign pseudo labels to unlabeled audio data. These unlabeled
data with pseudo labels facilitate the training of classification
model, alleviating the insufficient of annotated acoustic data.

In summary, the main contributions in this paper are as
follows:

1. A semi-supervised learning framework are introduced
into acoustic scene classification task. In this frame-
work, the labeled data are utilized to train the confident
classification model. And then, a contrastive strategy
are implemented to unlabeled data to assign pseudo la-
bels to them. These data with pseudo labels enlarge
the training data. Under this semi-supervised learning
framework, our proposed method learns more compli-
ciate inherent characteristic in audio signal and improve
the classification performance.

2. An excellent backbone for audio signal, HuBERT [5],
is adapted into acoustic scene classification task. Ben-
efiting from the pre-training on huge audio data, Hu-
BERT has great transferability on diverse downstream
tasks about acoustic analysis. Thus, we fine-tune the
HuBERT on the ICME Dataset used in this paper. The
fine-tuning successfully adapts HuBERT on acoustic
scene classification task and gain promising perfor-
mance.

3. The experimental results show that the introduced
semi-supervised learning framework and HuBERT [5]



backbone improve the classification accuracy on acous-
tic scene classification task effectively. Our proposed
method exploits the unlabeled data and pre-trained
model sufficiently.

2. METHODS

Figure 1 offers a concise depiction of the proposed method in
this paper. The process of our system could be divided into
the following three stages:

Fig. 1. The pipeline of the proposed method.

2.1. Consistency regularization

For an L-class classification problem, let χ =
{(xb, pb) : b ∈ (1, . . . , B)} be a batch of B labeled ex-
amples, where xb are the training examples and Pb are
one-hot labels. Let U = {ub : b ∈ (1, . . . , µB)} be a batch
of µB unlabeled examples where µ is a hyperparameter that
determines the relative sizes of χ and U . Let pm (y|x) be the
predicted class distribution produced by the model for input
x. We denote the cross-entropy between two probability
distributions p and q as H(p, q). We perform two types
of augmentations: strong and weak, denoted by A and α
respectively.

Consistency regularization is an important component of
recent state-of-the-art SSL algorithms. Consistency regular-
ization utilizes unlabeled data by relying on the assumption
that the model should output similar predictions when fed per-
turbed versions of the same data. This idea was first proposed
in [6] and popularized by [7], where the model is trained both
via a standard supervised classification loss and on unlabeled

data via the loss function
µB∑
b=1

∥pm(y|α(ub))− pm(y|α(ub))∥22 (1)

Note that both α and pm are stochastic functions, so the two
terms in eq. (1) will indeed have different values. Exten-
sions to this idea include using an adversarial transformation
in place of α, using a running average or past model predic-
tions for one invocation of pm , using a cross-entropy loss in
place of the squared ℓ2 loss, using stronger forms of augmen-
tation, and using consistency regularization as a component
in a larger SSL pipeline.

The strategy operates by applying two key processes on
the unlabeled data: weak augmentation and strong augmenta-
tion. First, each unlabeled data point is subjected to a weak
augmentation technique, generating a slightly modified ver-
sion of the original data. The model then makes predictions
on these weakly augmented versions. If the model’s pre-
diction for a weakly augmented data point exceeds a certain
confidence threshold, that prediction is treated as a pseudo-
label for the corresponding strongly augmented version of the
same data point. The model is then trained to predict the
pseudo-labels of these strongly augmented data points, effec-
tively learning from the unlabeled data by assuming that if
it can correctly predict the class of a weakly augmented data
point with high confidence, the same prediction should apply
to its strongly augmented counterpart. This process allows
our method to exploit the unlabeled data efficiently by en-
suring that only high-confidence predictions contribute to the
model’s training, thereby minimizing the risk of reinforcing
incorrect predictions.

2.2. Pseudo-label

Pseudo-label leverages the idea of using the model itself to
obtain artificial labels for unlabeled data. Specifically, this
refers to the use of “hard” labels (i.e., the arg max of the
model’s output) and only retaining artificial labels whose
largest class probability fall above a predefined threshold.
Letting qb = pm (y|ub), pseudo-label uses the following loss
function:

1

µB

µB∑
b=1

I(max(qb) ≥ τ)H(q̂b, qb) (2)

where q̂b = argmax (qb) and τ is the threshold. For sim-
plicity, we assume that arg max applied to a probability dis-
tribution produces a valid “one-hot” probability distribution.
The use of a hard label makes pseudo-label closely related
to entropy minimization, where the model’s predictions are
encouraged to be low-entropy (i.e., high-confidence) on unla-
beled data.

The loss function consists of two cross-entropy loss terms:
a supervised loss ℓs applied to labeled data and an unsuper-
vised loss ℓu. Specifically, ℓsis just the standard cross-entropy



loss on weakly augmented labeled examples:

ℓs =
1

B

B∑
b=1

H(pb, pm(y|α(ub))) (3)

ℓu =
1

µB

µB∑
b=1

I(max(qb) ≥ τ)H(q̂b, pm(y|A(ub))) (4)

The loss minimized is simply ℓs + λuℓu where λu is a
fixed scalar hyperparameter denoting the relative weight of
the unlabeled loss.

2.3. HuBERT Model

HuBERT (Hidden Unit BERT) [5] is a novel approach in the
field of speech processing that leverages unsupervised learn-
ing techniques to understand and process audio. The method
is built upon the foundation of BERT (Bidirectional Encoder
Representations from Transformers) [8], a transformer-based
model known for its effectiveness in natural language pro-
cessing tasks. HuBERT distinguishes itself by pre-training on
a large corpus of unlabeled audio data, where it learns to pre-
dict the masked portions of audio sequences, similar to how
BERT predicts masked words in text.

Specifically, the raw audio data is first segmented into
smaller, manageable chunks. These segments are then con-
verted into a suitable format for processing, typically involv-
ing feature extraction steps such as computing Mel-frequency
cepstrum coefficients (MFCCs) or using raw waveform data
directly. The extracted features from the audio segments are
clustered using k-means clustering. This step aims to group
similar sounding segments together, creating a set of discrete
units or pseudo-labels that represent different sounds in the
audio data.

Similar to the masked language model in BERT [8], por-
tions of the audio segments are masked randomly. The Hu-
BERT model is then trained to predict the pseudo-labels of
these masked segments based on the context provided by the
unmasked parts. This training utilizes a transformer-based ar-
chitecture, benefiting from its ability to capture long-range
dependencies in data.

After an initial round of training, the model’s predictions
can be used to refine the clustering of audio features. By using
the model’s output to re-cluster the audio data, the quality of
pseudo-labels is improved, leading to more meaningful dis-
tinctions between different sounds. With the refined clusters,
the model undergoes another round of masked audio model-
ing. This iterative process can be repeated multiple times,
with each cycle potentially enhancing the model’s ability to
understand and represent the audio data.

Once pre-trained, the HuBERT model can be fine-tuned
for specific speech processing tasks, such as speech recog-
nition, emotion detection, or speaker identification. This in-
volves training the model on a smaller labeled dataset specific

to the task at hand, allowing HuBERT to apply its learned
representations to achieve high performance on these tasks.
Thus, we select HuBERT as backbone in proposed semi-
supervised framework.

3. DATASET

3.1. ICME Dataset

The ASC dataset for ICME 2024[1], extracted from the
CAS 2023 dataset, encompasses a curated selection of ten
quintessential acoustic scenes—Bus, Airport, Metro, Restau-
rant, Shopping Mall, Public Square, Urban Park, Traffic
Street, Construction Site, and Bar—amassing a total auditory
experience exceeding 130 hours. The dataset is methodically
partitioned into development and evaluation sets, with each
segment containing 10-second audio clips for analysis. In the
development dataset, 20% of the data with scene labels to aid
the development of semi-supervised learning algorithms. The
evaluation set, collated from recordings across twelve cities,
integrates data from five previously unexposed urban environ-
ments. This intentional selection criterion is designed to en-
hance the robustness and validity of the assessment, thereby
offering a substantive evaluation of the domain shift adapt-
ability inherent in the submitted methodologies.

3.2. Partition of data

The development set comprises 8,700 segments, of which
1,740 are labelled. We divide these data into a training set
(8,450 segments ), a validation set (100 segments), and a test
set (150 segments). Both the validation and test sets are com-
posed of labelled data. The residual 1,490 labelled segments
are divided into the training set.

4. EXPERIMENT

4.1. Evaluation metric

The performance of all algorithms used in our experiment is
assessed using the following metrics, i.e., macro-average ac-
curacy and F1− Score. The macro-average accuracy is cal-
culated as the average of class-wise accuracies by the follow-
ing expression:

Accuracy =
1

N

N∑
i=1

Accuracyi (5)

where N is the number of classes, and Accuracyi is the accu-
racy for class i. F1− Score is computed as:

F1− Score = 2× precision× recall

precision+ recall
(6)

Accurac is computed as:

Accurac =
TP + TN

TP + FP + TN + FN
(7)



Table 1. Hyper-parameters of Experiment.
Sampling Rate 44100

Max Length 10.0
Weight Decay 5e-4

Model HuBERT-Base
Labeled Batch size 2

Unlabeled Batch size 2
Learning Rate 5e-5

Layer Decay Rate 0.75
Scheduler η = η0 cos

(
7πk
16K

)
Model EMA Momentum 0.0

Prediction EMA Momentum 0.999
Weak Augmentation Random Sub-sample

Strong Augmentation

Random Sub-sample
Random Gain
Random Pitch
Random Speed

Precision is computed as:

Precision =
TP

TP + FP
(8)

Recall is computed as:

Recall =
TP

TP + FN
(9)

where, TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

4.2. Experiment setup

In our framework, supervised training is conducted for the
labelled data; meanwhile, labelled data are additionally in-
cluded in the unlabeled dataset for semi-supervised learning.
A weakly-augmented is fed into the model to obtain predic-
tions. When the model assigns a probability to any class
which is above a threshold, the prediction is converted to a
one-hot pseudo-label. Then, we compute the model’s predic-
tion for a strong augmentation of the same input. The model
is trained to make its prediction on the strongly-augmented
version match the pseudo-label via a cross-entropy loss.

We adopt HuBert as the pre-trained model. The batch size
of labeled data and unlabeled data is set to 2. We keep the
sampling rate of audios as 44100. We adopt AdamW opti-
mizer with a weight decay of 5e-4, and search the learning
rate and layer decay. Mimicking RandAugment, for strong
augmentation in audio tasks, we random sample 2 augmen-
tations from the augmentation pool and random set the aug-
mentation magnitude during training.

Table 2. The results of our model on the test set.
Scene Accuracy F1-score

Airport 100% 96.77%
Urban park 100% 98.5%

Public square 100% 100%
Traffic street 100% 100%
Restaurant 93.33% 93.33%

Bus 100% 100%
Shopping mall 93.33% 96.55%

Bar 100% 100%
Metro 93.33% 96.55%

Construction site 100% 100%
Average 98.00% 98.00%

4.3. Result

The ASC performance of the our system for each scene is
shown in Table 2. Our system achieves an accuracy of 98.00%
and F1-score of 98.00%. Figure 2 shows the confusion ma-
trix of our system. As depicted in Figure 2, our system has
excellent recognition performance for each scene.

Fig. 2. The confusion matrices on the test set.

5. CONCLUSION

To alleviate the bias in manual annotated data and the defi-
ciency of labeled data, we attempt to utilize unlabeled data
and build a semi-supervised learning framework for acoustic
scene classification. In this framework, the labeled data are



used to train the classification model, and the unlabeled data
are transformed into two variants via strong augmentation and
weak augmentation. Then, these two variants from unlabeled
data are feed to model and their pseudo labels are assigned
by consistency regularization. The data with pseudo labels
are further used to train the model. In addition, to ensure
the generalization ability of model, we choose the HuBERT
backbone in semi-supervised learning framework, and fine-
tune this backbone for acoustic scene classification, adapting
pre-trained audio model to downstream task effectively. The
experiments show that our method obtains competitive results
on ICME challenge dataset.
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